Source code for pygimli.utils.geostatistics

# -*- coding: utf-8 -*-
"""Geostatistical utility functions concerning covariances."""

import time
from math import pi, sin, cos

import numpy as np

import pygimli as pg


# better rename I to something else (range?) according to E743
def covarianceMatrixVec(x, y, z=None, I=None, dip=0, strike=0, var=1):
    """Geostatistical covariance matrix for given points.

    Parameters
    ----------
    **kwargs

        I : float or list of floats
            correlation lengths (range) in individual directions
        dip : float
            dip angle (in degrees) of major axis (I[0])
        strike : float
            strike angle (for 3D)

    Returns
    -------
    Cm : np.array (square matrix of size cellCount/nodeCount)
        covariance matrix

    """
    if I is None:
        I = [1, 1, 1]
    elif isinstance(I, (float, int)):
        I = [I, I, I]
    elif len(I) < 3:
        I.append(I[-1])

    if z is None:
        z = np.zeros_like(x)

    hx = x - x[:, np.newaxis]
    hy = y - y[:, np.newaxis]
    hz = z - z[:, np.newaxis]
    alpha = -dip * pi / 180  # rotation of operator
    beta = -strike * pi / 180
    # compute lags, normalized by correlation lengths
    Hx = (hx*cos(alpha)-hy*sin(alpha))*cos(beta) / I[0]
    Hy = (hx*sin(alpha)+hy*cos(alpha))*cos(beta) / I[1]
    Hz = hz * sin(beta) / I[2]
    CM = var*np.exp(-np.sqrt(Hx**2+Hy**2+Hz**2))  # Covariance matrix

    return CM


def covarianceMatrixPos(pos, **kwargs):
    """Position (R3Vector) based covariance matrix"""
    return covarianceMatrixVec(np.array(pg.x(pos)), np.array(pg.y(pos)),
                               np.array(pg.z(pos)), **kwargs)


[docs] def covarianceMatrix(mesh, nodes=False, **kwargs): """Geostatistical covariance matrix (cell or node) for given mesh. Parameters ---------- mesh : gimliapi:`GIMLI::Mesh` Mesh nodes : bool [False] use node positions, otherwise (default) cell centers are used **kwargs I : float or list of floats correlation lengths (range) in individual directions dip : float dip angle (in degree) of major axis (I[0]) strike : float strike angle (for 3D) Returns ------- Cm : np.array (square matrix of size cellCount/nodeCount) covariance matrix """ if nodes: pos = mesh.positions() else: pos = mesh.cellCenters() return covarianceMatrixPos(pos, **kwargs)
[docs] def generateGeostatisticalModel(mesh, nodes=False, seed=None, **kwargs): """Generate geostatistical model (cell or node) for given mesh. Parameters ---------- mesh : gimliapi:`GIMLI::Mesh` Mesh nodes : bool [False] use node positions, otherwise (default) cell centers are used seed : int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional A seed to initialize the BitGenerator. If None, then fresh, unpredictable entropy will be used. The `seed` variable is passed to :func:`numpy.random.default_rng` **kwargs I : float or list of floats correlation lengths (range) in individual directions dip : float dip angle of major axis (I[0]) strike : float strike angle (for 3D) Returns ------- res : np.array of size cellCount or nodeCount (nodes=True) """ rng = np.random.default_rng(seed=seed) return rng.multivariate_normal(np.ones(mesh.cellCount()), covarianceMatrix(mesh, nodes=nodes, **kwargs))
[docs] def computeInverseRootMatrix(CM, thrsh=0.001, verbose=False): """Compute inverse square root (C^{-0.5} of matrix.""" spl = pg.optImport('scipy.linalg', 'scipy linear algebra') if spl is None: return None t = time.time() e_vals, e_vecs = spl.eigh(CM) if verbose: print('(C) Calculation time for eigenvalue decomposition:\n%s sec' % (time.time()-t)) t = time.time() A = spl.inv(np.diag(np.sqrt(np.real(e_vals)))) if verbose: print('(C) Calculation time for inv(diag(sqrt)):\n%s sec' % (time.time()-t)) t = time.time() gemm = spl.get_blas_funcs("gemm", [e_vecs, A]) B = gemm(1, e_vecs, A) if verbose: print('(C) Calculation time for dot 1:\n%s sec' % (time.time()-t)) t = time.time() gemm2 = spl.get_blas_funcs("gemm", [B, np.transpose(e_vecs)]) if verbose: print('gemm test:\n%s sec' % (time.time()-t)) CM05 = gemm2(1, B, np.transpose(e_vecs)) if verbose: print('(C) Calculation time for dot 2:\n%s sec' % (time.time()-t)) if thrsh: nModel = len(CM) RCM05 = pg.matrix.SparseMapMatrix(nModel, nModel) for i in range(nModel): for j in range(nModel): if np.abs(CM05[i][j]) > thrsh: RCM05.setVal(i, j, CM05[i][j]) return RCM05 else: return CM05 # not making sense as constraints matrix