Source code for pygimli.physics.SIP.sipspectrum

#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Spectral induced polarization (SIP) spectrum class and modules."""

import sys
import codecs

from math import log10, exp, pi
import numpy as np

import pygimli as pg
from pygimli.utils import isComplex, squeezeComplex, toComplex, KramersKronig

from .importData import readTXTSpectrum, readFuchs3File, readRadicSIPFuchs

from .plotting import drawAmplitudeSpectrum, drawPhaseSpectrum, showSpectrum
from .models import DebyePhi, DebyeComplex, relaxationTerm, DoubleColeCole
from .tools import fitCCEMPhi, fitCCC
from .tools import fitCCCC, fitCCPhi, fit2CCPhi

from pygimli.frameworks import MethodManager
from pygimli.frameworks import ParameterModelling


[docs] class SpectrumModelling(ParameterModelling): """Modelling framework with an array of freqencies as data space. Attributes ---------- params: dict function: callable complex: bool """
[docs] def __init__(self, funct=None, **kwargs): """Initialize. Parameters ---------- func : function modelling function complex : bool complex function frequencies : iterable frequency vector """ self._complex = kwargs.pop("complex", False) super(SpectrumModelling, self).__init__(funct=funct, **kwargs) self.defaultModelTrans = 'log' self._freqs = kwargs.pop("frequencies", None)
@property def complex(self): """Return if spectrum is complex.""" return self._complex @complex.setter def complex(self, c): self._complex = c @property def freqs(self): """Return frequency vector.""" if self._freqs is None: pg.critical("No frequencies defined.") return self._freqs @freqs.setter def freqs(self, f): self._freqs = f self.dataSpace = self._freqs
[docs] def response(self, params): """Model response. Parameters ---------- params : iterable model Returns ------- array_like model response vector """ ret = super().response(params) if self.complex: return squeezeComplex(ret) return ret
[docs] def drawData(self, ax, data, err=None, **kwargs): """Draw data.""" if self.complex: Z = toComplex(data) showSpectrum(self.freqs, np.abs(Z), -np.angle(Z)*1000, axs=ax, **kwargs) else: ax.semilogx(self.freqs, data) ax.legend()
[docs] class SpectrumManager(MethodManager): """Manager to work with spectra data."""
[docs] def __init__(self, fop=None, **kwargs): """Set up spectrum manager. Parameters ---------- fop : pg.Modelling operator, optional Forward operator. The default is None. **kwargs : TYPE passed to SpectrumManager. """ self._funct = fop super(SpectrumManager, self).__init__(**kwargs)
[docs] def setFunct(self, fop, **kwargs): """Set forward modelling function.""" self._funct = fop self.reinitForwardOperator(**kwargs)
[docs] def createForwardOperator(self, **kwargs): """Create a Forward operator.""" if isinstance(self._funct, SpectrumModelling): return self._funct fop = SpectrumModelling(self._funct, **kwargs) return fop
[docs] def createInversionFramework(self, **kwargs): """Create inversion framework.""" return pg.frameworks.MarquardtInversion(**kwargs)
[docs] def simulate(self): """Make a simulation.""" pass
[docs] def setData(self, freqs=None, amp=None, phi=None, eAmp=0.03, ePhi=0.001): """Set data for chosen sip model. Parameters ---------- freqs: iterable Array-like frequencies. amp: iterable Array-like amplitudes to work with. phi: iterable Array-like phase angles to work with. eAmp: float|iterable Relative error for amplitudes. ePhi: float|iterable Absolute error for phase angles. """ self.fop.freqs = freqs if phi is not None: self.fw.dataVals = self._ensureData(toComplex(amp, phi)) if isinstance(ePhi, float): ePhi = abs(ePhi/phi) else: self.fw.dataVals = self._ensureData(amp) if isinstance(eAmp, float): eAmp = np.ones(len(freqs)) * eAmp if phi is not None: err = np.asarray([*eAmp, *ePhi]) else: err = eAmp self.fw.errorVals = self._ensureError(err, self.fw.dataVals)
def _ensureData(self, data): """Check data validity.""" if isinstance(data, pg.DataContainer): pg.critical("Implement me") if data is None: data = self.fw.dataVals vals = data if isComplex(data): self.fop.complex = True vals = squeezeComplex(data) if abs(min(vals)) < 1e-12: print(min(vals), max(vals)) pg.critical("There are zero data values.") return vals def _ensureError(self, err, dataVals=None): """Check data validity.""" if isinstance(err, pg.DataContainer): pg.critical("Implement me") if err is None: err = self.fw.errorVals vals = err if vals is None: return self._ensureError(0.01, dataVals) if abs(min(vals)) < 1e-12: print(min(vals), max(vals)) pg.critical("There are zero data values.") return vals
[docs] def invert(self, data=None, f=None, **kwargs): """Invert the spectrum.""" if f is not None: self.fop.freqs = f limits = kwargs.pop('limits', {}) for k, v in limits.items(): self.fop.setRegionProperties(k, limits=v) if 'startmodel' not in kwargs: sm = (v[1] + v[0]) / 2 if v[0] > 0: sm = np.exp(np.log(v[0]) + (np.log(v[1]) - np.log(v[0])) / 2.) self.fop.setRegionProperties(k, startModel=sm) return super(SpectrumManager, self).invert(data, **kwargs)
[docs] def showResult(self): """Show resulting data.""" ax = None if self.fop.complex: fig, ax = pg.plt.subplots(nrows=2, ncols=1) else: fig, ax = pg.plt.subplots(nrows=1, ncols=1) self.fop.drawModel(ax, self.fw.model) self.fop.drawData(ax, self.fw.dataVals, label='data') self.fop.drawData(ax, self.fw.response, label='response') return ax
[docs] class SIPSpectrum(object): """SIP spectrum data analysis."""
[docs] def __init__(self, filename=None, unify=False, onlydown=True, f=None, amp=None, phi=None, k=1, sort=True, basename='new', **kwargs): """Init SIP class with either filename to read or data vectors. Examples -------- >>> #sip = SIPSpectrum('sipexample.txt', unify=True) # unique f values >>> #sip = SIPSpectrum(f=f, amp=R, phi=phase, basename='new') """ self._verbose = False self.basename = basename self.fig = {} self.k = k self.f = None # mandatory frequencies self.amp = None # mandatory amplitudes self.phi = None # mandatory phases self.epsilon0 = 8.854e-12 if filename is not None: self.loadData(filename, **kwargs) else: if f is not None: self.f = np.asarray(f) if amp is not None: self.amp = np.asarray(amp) if phi is not None: self.phi = np.asarray(phi) if unify and self.amp is not None: self.unifyData(onlydown) if sort and self.amp is not None: self.sortData() self.ampOrg = None self.phiOrg = None self.phiCC = None # better make a struct of m, amp, phi (tau) self.ampCC = None self.mCC = None self.phiDD = None self.ampDD = None self.mDD = None self.tau = None
def __repr__(self): """Human readable string representation of the class.""" out = self.__class__.__name__ + " object" if self.f is not None: if hasattr(self.f, '__iter__'): out += "\nnf=" + str(len(self.f)) + " min/max=" out += str(min(self.f)) + "/" + str(max(self.f)) return out
[docs] def loadData(self, filename, **kwargs): """Import spectral data. Import Data and try to assume the file format. """ verbose = kwargs.pop('verbose', self._verbose) with codecs.open(filename, 'r', encoding='iso-8859-15', errors='replace') as f: firstLine = f.readline() fnLow = filename.lower() self.basename = filename[:-4] if 'SIP Fuchs III' in firstLine: if verbose: pg.info("Reading SIP Fuchs III file") self.f, self.amp, self.phi, self.header = readFuchs3File( filename, verbose=verbose, **kwargs) self.phi *= -np.pi/180. elif 'SIP-Quad' in firstLine: if verbose: pg.info("Reading SIP Quad file") self.f, self.amp, self.phi, self.header = readFuchs3File( filename, nfr=9, namp=10, nphi=11, nk=7, verbose=verbose, **kwargs) self.phi *= -np.pi/180. elif 'SIP-Fuchs' in firstLine: if verbose: pg.info("Reading SIP Fuchs file") self.f, self.amp, self.phi, drhoa, dphi = readRadicSIPFuchs( filename, verbose=verbose, quad='SIP-Quad' in firstLine, **kwargs) self.phi *= -np.pi/180. elif fnLow.endswith('.txt') or fnLow.endswith('.csv'): self.f, self.amp, self.phi = readTXTSpectrum(filename, **kwargs) else: try: out = np.genfromtxt(filename, names=True) self.f = out["FreqHz"] self.amp = out["AppResOhmm"] self.phi = -out["Phasedeg"] * np.pi / 180 except BaseException: raise Exception("Don't know how to read data.") self.amp *= self.k return self.f, self.amp, self.phi
[docs] def unifyData(self, onlydown=False): """Unify data (only one value per frequency) by mean or selection.""" if self.f is None: return fu = np.unique(self.f) if len(fu) < len(self.f) or onlydown: if onlydown: nonzero = np.nonzero(np.diff(self.f) > 0)[0] if len(nonzero) > 0: wende = min(nonzero) if wende > 0: self.f = self.f[wende::-1] self.amp = self.amp[wende::-1] self.phi = self.phi[wende::-1] else: amp = np.zeros(fu.shape) phi = np.zeros(fu.shape) for i in range(len(fu)): ind = np.nonzero(self.f == fu[i])[0] amp[i] = np.mean(self.amp[ind]) phi[i] = np.mean(self.phi[ind]) self.f = fu self.amp = amp self.phi = phi
[docs] def sortData(self): """Sort data along increasing frequency (e.g. useful for KK).""" if self.f is None: return ind = np.argsort(self.f) self.amp = self.amp[ind] self.phi = self.phi[ind] self.f = self.f[ind]
[docs] def cutF(self, fcut=1e99, down=False): """Cut (delete) frequencies above a certain value fcut.""" if down: ind = self.f >= fcut else: ind = self.f <= fcut self.amp = self.amp[ind] self.phi = self.phi[ind] if np.any(self.phiOrg): self.phiOrg = self.phiOrg[ind] if np.any(self.ampOrg): self.ampOrg = self.ampOrg[ind] self.f = self.f[ind]
# self.amp = self.amp[self.f <= fcut] # self.phi = self.phi[self.f <= fcut] # if np.any(self.phiOrg): # self.phiOrg = self.phiOrg[self.f <= fcut] # # finally cut f # self.f = self.f[self.f <= fcut]
[docs] def omega(self): """Angular frequency.""" return self.f * 2 * np.pi
[docs] def realimag(self, cond=False): """Real and imaginary part of resistivity/conductivity (cond=True).""" if cond: amp = 1. / self.amp else: amp = self.amp return amp * np.cos(self.phi), amp * np.sin(self.phi)
[docs] def zNorm(self): """Normalized real (difference) and imag. z :cite:`NordsiekWel2008`.""" re, im = self.realimag() R0 = max(self.amp) zNormRe = 1. - re / R0 zNormIm = im / R0 return zNormRe, zNormIm
[docs] def showPhase(self, ax=None, **kwargs): """Plot phase spectrum (-phi over frequency).""" if ax is None: fig, ax = pg.plt.subplots() self.fig['phase'] = fig drawPhaseSpectrum(ax, self.f, self.phi*1000, **kwargs) return ax
[docs] def showData(self, reim=False, znorm=False, cond=False, nrows=2, ax=None, **kwargs): """Show amplitude and phase spectrum in two subplots. Parameters ---------- reim : bool show real/imaginary part instead of amplitude/phase znorm : bool (true forces reim) use normalized real/imag parts after Nordsiek&Weller (2008) nrows - use nrows subplots (default=2) Returns ------- fig, ax : mpl.figure, mpl.axes array """ if reim or znorm or cond: addstr = '' if znorm: re, im = self.zNorm() addstr = ' (norm)' else: re, im = self.realimag(cond=cond) fig, ax = showSpectrum(self.f, re, im, ylog=cond, nrows=nrows, axs=ax, **kwargs) self.fig['data'] = fig ax[0].set_ylabel('real part'+addstr) ax[1].set_ylabel('imaginary part'+addstr) else: fig, ax = showSpectrum(self.f, self.amp, self.phi*1000, axs=ax, **kwargs) self.fig['data'] = fig ax[0].set_title(kwargs.pop("title", self.basename)) return fig, ax
[docs] def getKK(self, use0=False): """Compute Kramers-Kronig impedance values (re->im and im->re).""" re, im = self.realimag() if False: ind = np.argsort(self.f) reKK, imKK = KramersKronig(self.f[ind], re[ind], im[ind], usezero=use0) else: fsort, ind = np.unique(self.f, return_index=True) reKK, imKK = KramersKronig(fsort, re[ind], im[ind], usezero=use0) re[ind] = reKK # sort back im[ind] = imKK return re, im
[docs] def getPhiKK(self, use0=False): """Compute phase from Kramers-Kronig quantities.""" _, imKK = self.getKK(use0) re, _ = self.realimag() return np.arctan2(imKK, re)
[docs] def showDataKK(self, use0=False): """Show data as real/imag subplots along with Kramers-Kronig curves.""" fig, ax = self.showData(reim=True) reKK, imKK = self.getKK(use0) ax[0].semilogx(self.f, reKK, label='KK') ax[1].semilogx(self.f, imKK, label='KK') for a in ax: a.set_yscale('linear') a.legend() self.fig['dataKK'] = fig return fig, ax
[docs] def checkCRKK(self, useEps=False, use0=False, ax=None): """Check coupling removal (CR) by Kramers-Kronig (KK) relation.""" if ax is None: fig, ax = pg.plt.subplots() self.fig['dataCRKK'] = fig ax.semilogx(self.f, self.phi*1000, "+-", label='org') ax.semilogx(self.f, self.getPhiKK(use0)*1000, "x-", label='orgKK') if useEps: self.removeEpsilonEffect() else: self.fitCCEM() ax.semilogx(self.f, self.phi*1000, "+--", label='corr') ax.semilogx(self.f, self.getPhiKK(use0)*1000, "+--", label='corrKK') ax.grid(True) ax.legend(loc='best')
[docs] def showPolarPlot(self, cond=False): """Show data in a polar plot (imaginary vs. real parts).""" re, im = self.realimag(cond=cond) fig, ax = pg.plt.subplots() self.fig['polar'] = fig ax.plot(re, im, 'b.') ax.set_aspect(1) ax.grid(True) for i in range(0, len(re), 5): fi = self.f[i] mul = 10**np.floor(np.log10(fi) - 2) # 3 counting digits ax.text(re[i], im[i], str(int(fi / mul) * mul)) return fig, ax
[docs] def epsilonR(self): """Calculate relative permittivity from imaginary conductivity.""" _, sigmaI = self.realimag(cond=True) return sigmaI / (self.f * 2 * pi * self.epsilon0)
[docs] def determineEpsilon(self, mode=0, sigmaR=None, sigmaI=None): """Retrieve frequency-independent epsilon for f->Inf. Parameters ---------- mode : int Operation mode: =0 - extrapolate using two highest frequencies (default) <0 - take last -n frequencies >0 - take n-th frequency sigmaR/sigmaI : float real and imaginary conductivity (if not given take data) Returns ------- er : float relative permittivity (epsilon) value (dimensionless) """ if sigmaR is None or sigmaI is None: sigmaR, sigmaI = self.realimag(cond=True) epsr = sigmaI / self.omega() / self.epsilon0 nmax = np.argmax(self.f) if mode == 0: f1 = self.f * 1 a = f1[nmax] * 1. f1[nmax] = 0 nmax1 = np.argmax(f1) a = a / f1[nmax1] er = (a*epsr[nmax] - epsr[nmax1]) / (a-1) elif mode < 0: er = np.median(epsr[mode:]) else: er = epsr[nmax] return er
[docs] def removeEpsilonEffect(self, er=None, mode=0): """Remove effect of (constant high-frequency) epsilon from sigma. Parameters ---------- er : float relative epsilon to correct for (else automatically determined) mode : int automatic epsilon determination mode (see determineEpsilon) Returns ------- er : float determined permittivity (see determineEpsilon) """ sigR, sigI = self.realimag(cond=True) if er is None: # er = self.determineEpsilon(mode=mode, sigmaR=sigR, sigmaI=sigI) print("detected epsilon of ", er) sigI -= er * self.omega() * self.epsilon0 self.phiOrg = self.phi self.phi = np.arctan(sigI/sigR) self.ampOrg = self.amp self.amp = 1. / np.sqrt(sigR**2 + sigI**2) return er
[docs] def fitCCPhi(self, ePhi=0.001, lam=1000., mpar=(0, 0, 1), taupar=(0, 1e-5, 100), cpar=(0.3, 0, 1), verbose=False): """Fit a Cole-Cole term (to phase only). Parameters ---------- ePhi : float absolute error of phase angle lam : float regularization parameter mpar, taupar, cpar : list[3] inversion parameters (starting value, lower bound, upper bound) for Cole-Cole parameters (m, tau, c) and EM relaxation time (em) """ if taupar[0] == 0: taupar = (1.0 / self.f[np.argmax(self.phi)] / 2.0 / pi, taupar[1], taupar[2]) # taupar[0] = 1.0 / self.f[np.argmax(self.phi)] / 2.0 / pi print("taupar", taupar) if mpar[0] == 0: mpar = (1. - min(self.amp)/max(self.amp), mpar[1], mpar[2]) # mpar[0] = 1. - min(self.amp)/max(self.amp) print("mpar", mpar) self.mCC, self.phiCC, self.chi2 = fitCCPhi( self.f, self.phi, ePhi, lam, mpar=mpar, taupar=taupar, cpar=cpar)
[docs] def fit2CCPhi(self, ePhi=0.001, lam=1000., mpar=(0, 0, 1), taupar1=(0, 1e-5, 1), taupar2=(0, 1e-1, 1000), cpar=(0.5, 0, 1), verbose=False): """Fit two Cole-Cole terms (to phase only). Parameters ---------- ePhi : float absolute error of phase angle lam : float regularization parameter mpar : list[3] starting value, lower bound, upper bound for chargeability taupar1 / taupar2 : list[3] starting value, lower bound, upper bound for 2 time constants cpar1 / cpar2 : list[3] starting value, lower bound, upper bound for 2 relaxation exponents """ if taupar1[0] == 0: taupar1 = (np.sqrt(taupar1[1]*taupar1[2]), taupar1[1], taupar1[2]) print("taupar1", taupar1) if taupar2[0] == 0: taupar2 = (np.sqrt(taupar2[1]*taupar2[2]), taupar2[1], taupar2[2]) print("taupar2", taupar2) # taupar1[0] = 1.0 / self.f[np.argmax(self.phi)] / 2.0 / pi if mpar[0] == 0: mpar = (1. - min(self.amp)/max(self.amp), mpar[1], mpar[2]) # *2 print("mpar", mpar) self.mCC, self.phiCC = fit2CCPhi(self.f, self.phi, ePhi, lam, mpar1=mpar, mpar2=mpar, cpar1=cpar, cpar2=cpar, taupar1=taupar1, taupar2=taupar2)
[docs] def fitCCEM(self, ePhi=0.001, lam=1000., remove=True, mpar=(0.2, 0, 1), taupar=(1e-2, 1e-5, 100), cpar=(0.25, 0, 1), empar=(1e-7, 1e-9, 1e-5), verbose=False): """Fit a Cole-Cole term with additional EM term to phase. Parameters ---------- ePhi : float absolute error of phase angle lam : float regularization parameter remove: bool remove EM term from data mpar, taupar, cpar, empar : list[3] inversion parameters (starting value, lower bound, upper bound) for Cole-Cole parameters (m, tau, c) and EM relaxation time (em) """ self.mCC, self.phiCC = fitCCEMPhi(self.f, self.phi, ePhi, lam, mpar, taupar, cpar, empar, verbose=verbose) # correct EM term from data if remove: self.phiOrg = self.phi self.phi = self.phi + \ np.angle(relaxationTerm(self.f, self.mCC[3]))
[docs] def fitColeCole(self, useCond=False, **kwargs): """Fit a Cole-Cole model to the phase data. Parameters ---------- useCond : bool use conductivity form of Cole-Cole model instead of resistivity error : float [0.01] absolute phase error lam : float [1000] initial regularization parameter mpar : tuple/list (0, 0, 1) inversion parameters for chargeability: start, lower, upper bound taupar : tuple/list (1e-2, 1e-5, 100) inversion parameters for time constant: start, lower, upper bound cpar : tuple/list (0.25, 0, 1) inversion parameters for Cole exponent: start, lower, upper bound """ if useCond: # use conductivity formulation instead of resistivity self.mCC, self.ampCC, self.phiCC, self.chi2 = fitCCCC( self.f, self.amp, self.phi, **kwargs) self.mCC[0] = 1. / self.mCC[0] else: self.mCC, self.ampCC, self.phiCC, self.chi2 = fitCCC( self.f, self.amp, self.phi, **kwargs)
[docs] def fitDoubleColeCole(self, ePhi=0.001, eAmp=0.01, lam=1000., robust=False, verbose=True, useRho=True, useMult=False, aphi=True, mpar1=(0.2, 0, 1), mpar2=(0.2, 0, 1), tauRho=True, taupar1=(1e-2, 1e-5, 100), taupar2=(1e-4, 1e-5, 100), cpar1=(0.5, 0, 1), cpar2=(0.5, 0, 1)): """Fit double Cole-Cole term to complex resistivity or phase. Parameters ---------- ePhi : float [0.001] absolute error of phase angle in rad eAmp : float [0.01 = 1%] absolute error of phase angle lam : float regularization parameter robust : bool [False] use robustData (L1 norm on data side) useRho : bool [True] Cole-Cole defined for impedance/resistivity, otherwise conductivity useMult : bool [False] the two terms are combined as product (otherwise sum) tauRho : bool [False] in case of useRho=False the time constant is defined like for rho mpar1/2, taupar1/2, cpar1/2 : list[3] inversion parameters (starting value, lower bound, upper bound) for Cole-Cole parameters (m, tau, c) """ f2CC = DoubleColeCole(self.f, rho=useRho, aphi=aphi, tauRho=False, mult=useMult) if useRho: rhoStart = min(self.amp) f2CC.region(0).setParameters(rhoStart, 0., rhoStart*10) else: sigStart = 1./max(self.amp) f2CC.region(0).setParameters(sigStart, 0., sigStart*10) f2CC.region(1).setParameters(*mpar1) # m (start,lower,upper) f2CC.region(2).setParameters(*taupar1) # tau f2CC.region(3).setParameters(*cpar1) # c f2CC.region(4).setParameters(*mpar2) # m (start,lower,upper) f2CC.region(5).setParameters(*taupar2) # tau f2CC.region(6).setParameters(*cpar2) # c if aphi: amp = self.amp if useRho else 1./self.amp data = np.hstack((amp, self.phi)) error = np.hstack((np.ones_like(amp)*eAmp, ePhi / np.abs(self.phi))) else: re, im = self.realimag(not useRho) data = np.hstack((re, im)) error = np.ones(len(self.f)*2) * eAmp ICC = pg.core.Inversion(data, f2CC, False) # set up inversion class ICC.setRelativeError(error) # 1 mrad ICC.setLambda(lam) # start with large damping and cool later ICC.setMarquardtScheme(0.8) # lower lambda by 20%/it., no stop chi=1 ICC.setRobustData(robust) ICC.setDeltaPhiAbortPercent(1) # ICC.setMaxIter(0) self.mCC = ICC.run() # run inversion self.chi2 = ICC.chi2() if verbose: ICC.echoStatus() one, two = np.split(ICC.response(), 2) if aphi: self.ampCC = one self.phiCC = two
[docs] def fitDebyeModel(self, ePhi=0.001, lam=1e3, lamFactor=0.8, tau=None, mint=None, maxt=None, nt=None, useComplex=True, showFit=False, verbose=False, **kwargs): """Fit a (smooth) continuous Debye model (Debye decomposition). Parameters ---------- ePhi : float absolute error of phase angle lam : float regularization parameter lamFactor : float regularization factor for subsequent iterations mint/maxt : float minimum/maximum tau values to use (else automatically from f) nt : int number of tau values (default number of frequencies * 2) new : bool new implementation (experimental) showFit : bool show fit cType : int constraint type (1/2=smoothness 1st/2nd order, 0=minimum norm) phi : iterable use phi instead of self.phi """ nf = len(self.f) if tau is None: if mint is None: mint = .1 / max(self.f) if maxt is None: maxt = .5 / min(self.f) if nt is None: nt = nf*2 self.tau = np.logspace(log10(mint), log10(maxt), nt) else: self.tau = tau # discretize tau, setup DD and perform DD inversion startModel = pg.Vector(len(self.tau), 0.01) new = kwargs.pop("new", useComplex) # renamed kwargs if new: reNorm, imNorm = self.zNorm() fDD = DebyeComplex(self.f, self.tau) Znorm = pg.cat(reNorm, imNorm) IDD = pg.Inversion(fop=fDD) absErr = max(Znorm)*0.003+ePhi self.mDD = IDD.run(Znorm, absoluteError=absErr, startModel=startModel, lam=lam, lambdaFactor=lamFactor, **kwargs) IDD.echoStatus() else: fDD = DebyePhi(self.f, self.tau) IDD = pg.Inversion(fop=fDD) phi = kwargs.pop("phi", self.phi) self.mDD = IDD.run(phi, absoluteError=ePhi, startModel=startModel, lam=lam, lambdaFactor=lamFactor, **kwargs) self.invDD = IDD if new: print("ARMS=", IDD.absrms(), "RRMS=", IDD.absrms()/max(Znorm)*100) resp = np.array(IDD.response) respRe = resp[:nf] respIm = resp[nf:] respC = ((1 - respRe) + respIm * 1j) * max(self.amp) self.phiDD = np.angle(respC) self.ampDD = np.abs(respC) if showFit: fig, ax = self.showData(znorm=True, nrows=3) self.fig['DebyeFit'] = fig ax[0].plot(self.f, respRe, 'r-') ax[1].plot(self.f, respIm, 'r-') ax[2].semilogx(self.tau, self.mDD, 'r-') ax[2].set_xlim(max(self.tau), min(self.tau)) ax[2].set_ylim(0., max(self.mDD)) ax[2].grid(True) ax[2].set_xlabel(r'$\tau$ (s)') ax[2].set_ylabel('$m$ (-)') else: self.phiDD = IDD.response if showFit: fig, ax = self.showData(nrows=3) self.fig['DebyeSpectrum'] = fig ax[2].semilogx(self.tau, self.mDD, 'r-')
[docs] def totalChargeability(self): """Total chargeability (sum) from Debye curve.""" return sum(self.mDD)
[docs] def logMeanTau(self): """Mean logarithmic relaxation time (50% cumulative log curve).""" return exp(np.sum(np.log(self.tau) * self.mDD) / sum(self.mDD))
[docs] def showAll(self, save=False, ax=None): """Plot spectrum, Cole-Cole fit and Debye distribution.""" if np.any(self.mCC): # generate title strings mCC = self.mCC rstr = r'$\rho$={:.4f} ' cstr = r'CC: m={:.3f} $\tau$={:.1e}s c={:.2f} ' if len(mCC) == 7: # double Cole-Cole tstr = rstr + cstr + cstr elif len(mCC) == 6: # double Cole-Cole only Phi tstr = cstr + cstr elif len(mCC) == 4: tstr = rstr + cstr else: tstr = cstr tCC = tstr.format(*mCC) if ax is None: fig, ax = pg.plt.subplots(nrows=2+(self.mDD is not None), figsize=(12, 12)) else: fig = ax[0].figure self.fig['all'] = fig fig.subplots_adjust(hspace=0.25) # amplitude drawAmplitudeSpectrum(ax[0], self.f, self.amp, label='data', ylog=0) if np.any(self.ampDD): ax[0].plot(self.f, self.ampDD, 'm-', label='DD response') if np.any(self.ampCC): ax[0].semilogx(self.f, self.ampCC, 'r-', label='CC model') ax[0].legend(loc='best') # phase if np.any(self.ampOrg): ax[0].semilogx(self.f, self.ampOrg, 'cx-', label='org. data') ax[0].legend(loc='best') if np.any(self.phiOrg): ax[1].semilogx(self.f, self.phiOrg * 1e3, 'cx-', label='org. data') ax[1].semilogx(self.f, self.phi * 1e3, 'b+-', label='data') if np.any(self.phiCC): ax[1].semilogx(self.f, self.phiCC * 1e3, 'r-', label='CC model') if np.any(self.phiDD): ax[1].semilogx(self.f, self.phiDD * 1e3, 'm-', label='DD model') ax[1].grid(True) ax[1].legend(loc='best') ax[1].set_xlabel('f (Hz)') ax[1].set_ylabel('-phi (mrad)') if np.any(self.mCC): ax[1].set_title(tCC, loc='left') if np.any(self.mDD): mtot = self.totalChargeability() lmtau = self.logMeanTau() tDD = r'DD: m={:.3f} $\tau$={:.1e}s'.format(mtot, lmtau) ax[2].semilogx(self.tau, self.mDD * 1e3) ax[2].set_xlim(ax[2].get_xlim()[::-1]) ax[2].grid(True) ax[2].set_xlabel(r'$\tau$ (s)') ax[2].set_ylabel('m (mV/V)') ax[2].set_title(tDD, loc='left') if save: if isinstance(save, str): savename = save else: savename = self.basename + '.pdf' fig.savefig(savename, bbox_inches='tight') pg.plt.show(block=False) return fig, ax
[docs] def saveFigures(self, name=None, ext='pdf'): """Save all existing figures to files using file basename.""" if name is None: name = self.basename if name is None or not any(name): name = 'out' for key in self.fig: self.fig[key].savefig(name+'-'+key+'.'+ext, bbox_inches='tight')
def run_SIPSPectrum(myfile): """Run typical SIP spectrum workflow for a given file.""" sip = SIPSpectrum(myfile) # sip.showData(znorm=True) if True: # Pelton sip.fitCCEM() else: sip.removeEpsilonEffect() sip.fitColeCole(useCond=False) sip.fitDebyeModel() # , showFit=True) # create titles and plot data, fit and model sip.showAll(save=True) if __name__ == "__main__": if len(sys.argv) < 2: print("No filename given, falling back to test case") run_SIPSPectrum('sipexample.txt') else: run_SIPSPectrum(sys.argv[1])