Source code for pygimli.viewer.mpl.dataview

#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Some data related viewer."""

import numpy as np
import pygimli as pg
from .utils import updateAxes as updateAxes_


[docs] def generateMatrix(xvec, yvec, vals, **kwargs): """Generate a data matrix from x/y and value vectors. Parameters ---------- xvec, yvec, vals : iterables (list, np.array, pg.Vector) of same length full: bool [False] generate a fully symmetric matrix containing all unique xvec+yvec otherwise A is squeezed to the individual unique vectors Returns ------- A : np.ndarray(2d) matrix containing the values sorted according to unique xvec/yvec xmap/ymap : dict {key: num} dictionaries for accessing matrix position (row/col number from x/y[i]) """ verbose = kwargs.get("verbose", True) if kwargs.pop('full', False): xymap = {xy: ii for ii, xy in enumerate(np.unique(np.hstack((xvec, yvec))))} xmap = xymap ymap = xymap else: xu, yu = np.unique(xvec), np.unique(yvec) if kwargs.pop('fillx', False): if verbose: pg.info('filling x', len(xu)) dx = np.median(np.diff(xu)).round(1) xu = np.arange(0, xu[-1] - xu[0] + dx * 0.5, dx) + xu[0] if verbose: pg.info(len(xu)) if kwargs.pop('filly', False): dy = np.median(np.diff(yu)).round(1) yu = np.arange(0, yu[-1] - yu[0] + dy * 0.5, dy) + yu[0] xmap = {xx: ii for ii, xx in enumerate(xu)} ymap = {yy: ii for ii, yy in enumerate(yu)} A = np.zeros((len(ymap), len(xmap))) inot = [] nshow = min([len(xvec), len(yvec), len(vals)]) for i in range(nshow): xi, yi = xvec[i], yvec[i] if A[ymap[yi], xmap[xi]]: inot.append(i) A[ymap[yi], xmap[xi]] = vals[i] if len(inot) > 0: if verbose: pg.info(len(inot), "data of", nshow, "not shown") if len(inot) < 30: if verbose: pg.info(inot) return A, xmap, ymap
[docs] def showValMapPatches(vals, xVec=None, yVec=None, dx=1, dy=None, **kwargs): """Show values as patches over x and y vector. Parameters ---------- vals : iterable values to plot xVec/yVec : iterable x/y axis values dx/dy : float patch width circular : bool assume circular (cyclic) positions """ ax, _ = pg.show(ax=kwargs.pop('ax', None)) gci, ymap = drawValMapPatches(ax, vals, xVec=xVec, yVec=yVec, dx=dx, dy=dy, **kwargs) cbar = pg.viewer.mpl.createColorBar( gci, **kwargs, onlyColorSet=not kwargs.pop('colorBar', True)) return ax, cbar, ymap
[docs] def drawValMapPatches(ax, vals, xVec=None, yVec=None, dx=1, dy=None, **kwargs): """Show values as patches over x and y vector. Parameters ---------- vals : iterable values to plot xVec/yVec : iterable x/y axis values dx/dy : float patch width circular : bool assume circular (cyclic) positions """ from matplotlib.collections import PatchCollection from matplotlib.patches import Wedge, Rectangle recs = [] circular = kwargs.pop('circular', False) if circular: recs = [None] * len(xVec) if dy is None: # map y values to unique ymap = {xy: ii for ii, xy in enumerate(np.unique(yVec))} xyMap = {} for i, y in enumerate(yVec): if y not in xyMap: xyMap[y] = [] xyMap[y].append(i) # maxR = max(ymap.values()) # what's that for? not used dR = 1 / (len(ymap.values())+1) # dOff = np.pi / 2 # what's that for? not used for y, xIds in xyMap.items(): r = 1. - dR*(ymap[y]+1) # ax.plot(r * np.cos(xvec[xIds]), # r * np.sin(xvec[xIds]), 'o') # print(y, ymap[y]) for i in xIds: phi = xVec[i] # x = r * np.cos(phi) # what's that for? not used y = r * np.sin(phi) dPhi = (xVec[1] - xVec[0]) recs[i] = Wedge((0., 0.), r + dR/1.5, (phi - dPhi)*360/(2*np.pi), (phi + dPhi)*360/(2*np.pi), width=dR, zorder=1+r) # if i < 5: # ax.text(x, y, str(i)) # pg.wait() else: raise BaseException("Not implemented") else: if dy is None: # map y values to unique ymap = {xy: ii for ii, xy in enumerate(np.unique(yVec))} for i in range(len(vals)): recs.append(Rectangle((xVec[i] - dx / 2, ymap[yVec[i]] - 0.5), dx, 1)) else: for i in range(len(vals)): recs.append(Rectangle((xVec[i] - dx / 2, yVec[i] - dy / 2), dx, dy)) ax.set_xlim(min(xVec) - dx / 2, max(xVec) + dx / 2) ax.set_ylim(len(ymap) - 0.5, -0.5) pp = PatchCollection(recs) pp.set_edgecolor(None) pp.set_linewidth(0.0) pp.set_array(vals) gci = ax.add_collection(pp) if circular: pp.set_edgecolor('black') pp.set_linewidth(0.1) return gci, ymap
[docs] def patchValMap(vals, xvec=None, yvec=None, ax=None, cMin=None, cMax=None, logScale=None, label=None, dx=1, dy=None, cTrim=0, **kwargs): """Plot previously generated (generateVecMatrix) y map (category). Parameters ---------- vals : iterable Data values to show. xvec : dict {i:num} dict (must match vals.shape[0]) ymap : iterable vector for x axis (must match vals.shape[0]) ax : mpl.axis axis to plot, if not given a new figure is created cMin/cMax : float minimum/maximum color values cTrim : float [0] use trim value to exclude outer cTrim percent of data from color scale logScale : bool logarithmic colour scale [min(vals)>0] label : string colorbar label ** kwargs: * circular : bool Plot in polar coordinates. """ from matplotlib.collections import PatchCollection from matplotlib.patches import Wedge, Rectangle from matplotlib.colors import LogNorm, Normalize if cMin is None: cMin = np.min(vals) # cMin = np.nanquantile(vals, cTrim/100) if cMax is None: cMax = np.max(vals) # cMin = np.nanquantile(vals, 1-cTrim/100) if logScale is None: logScale = (cMin > 0.0) norm = None if logScale and cMin > 0: norm = LogNorm(vmin=cMin, vmax=cMax) else: norm = Normalize(vmin=cMin, vmax=cMax) if ax is None: ax = pg.plt.subplots()[1] recs = [] circular = kwargs.pop('circular', False) if circular: recs = [None] * len(xvec) if dy is None: # map y values to unique ymap = {xy: ii for ii, xy in enumerate(np.unique(yvec))} xyMap = {} for i, y in enumerate(yvec): if y not in xyMap: xyMap[y] = [] xyMap[y].append(i) # maxR = max(ymap.values()) # what's that for? not used dR = 1 / (len(ymap.values())+1) # dOff = np.pi / 2 # what's that for? not used for y, xIds in xyMap.items(): r = 1. - dR*(ymap[y]+1) # ax.plot(r * np.cos(xvec[xIds]), # r * np.sin(xvec[xIds]), 'o') # print(y, ymap[y]) for i in xIds: phi = xvec[i] # x = r * np.cos(phi) # what's that for? not used y = r * np.sin(phi) dPhi = (xvec[1] - xvec[0]) recs[i] = Wedge((0., 0.), r + dR/1.5, (phi - dPhi)*360/(2*np.pi), (phi + dPhi)*360/(2*np.pi), width=dR, zorder=1+r) else: raise BaseException("Implementme") else: if dy is None: # map y values to unique ymap = {xy: ii for ii, xy in enumerate(np.unique(yvec))} for i in range(len(vals)): recs.append(Rectangle((xvec[i] - dx / 2, ymap[yvec[i]] - 0.5), dx, 1)) else: for i in range(len(vals)): recs.append(Rectangle((xvec[i] - dx / 2, yvec[i] - dy / 2), dx, dy)) ax.set_xlim(min(xvec) - dx / 2, max(xvec) + dx / 2) ax.set_ylim(len(ymap) - 0.5, -0.5) pp = PatchCollection(recs) # ax.clear() col = ax.add_collection(pp) pp.set_edgecolor(None) pp.set_linewidth(0.0) if 'alpha' in kwargs: pp.set_alpha(kwargs['alpha']) if circular: pp.set_edgecolor('black') pp.set_linewidth(0.1) cmap = pg.viewer.mpl.cmapFromName(**kwargs) if kwargs.pop('markOutside', False): cmap.set_bad('grey') cmap.set_under('darkgrey') cmap.set_over('lightgrey') cmap.set_bad('black') pp.set_cmap(cmap) pp.set_norm(norm) pp.set_array(vals) pp.set_clim(cMin, cMax) updateAxes_(ax) cbar = kwargs.pop('colorBar', True) ori = kwargs.pop('orientation', 'horizontal') if cbar in ['horizontal', 'vertical']: ori = cbar cbar = True if cbar is True: # not for cbar=1, which is really confusing! cbar = pg.viewer.mpl.createColorBar(col, cMin=cMin, cMax=cMax, nLevs=5, label=label, orientation=ori) elif cbar is not False: # .. cbar is an already existing cbar .. so we update its values pg.viewer.mpl.updateColorBar(cbar, cMin=cMin, cMax=cMax, nLevs=5, label=label) updateAxes_(ax) return ax, cbar, ymap
[docs] def patchMatrix(mat, xmap=None, ymap=None, ax=None, cMin=None, cMax=None, logScale=None, label=None, dx=1, **kwargs): """Plot previously generated (generateVecMatrix) matrix. Parameters ---------- mat : numpy.array2d matrix to show xmap : dict {i:num} dict (must match A.shape[0]) ymap : iterable vector for x axis (must match A.shape[0]) ax : mpl.axis axis to plot, if not given a new figure is created cMin/cMax : float minimum/maximum color values logScale : bool logarithmic colour scale [min(A)>0] label : string colorbar label dx : float width of the matrix elements (by default 1) """ from matplotlib.collections import PatchCollection from matplotlib.patches import Wedge, Rectangle from matplotlib.colors import LogNorm, Normalize mat = np.ma.masked_where(mat == 0.0, mat, False) if cMin is None: cMin = np.min(mat) if cMax is None: cMax = np.max(mat) if logScale is None: logScale = (cMin > 0.0) if logScale: norm = LogNorm(vmin=cMin, vmax=cMax) else: norm = Normalize(vmin=cMin, vmax=cMax) if ax is None: ax = pg.plt.subplots()[1] iy, ix = np.nonzero(mat) # != 0) recs = [] vals = [] for i, _ in enumerate(ix): recs.append(Rectangle((ix[i] - dx / 2, iy[i] - 0.5), dx, 1)) vals.append(mat[iy[i], ix[i]]) pp = PatchCollection(recs) col = ax.add_collection(pp) pp.set_edgecolor(None) pp.set_linewidth(0.0) if 'cmap' in kwargs: pp.set_cmap(kwargs.pop('cmap')) if 'cMap' in kwargs: pp.set_cmap(kwargs.pop('cMap')) pp.set_norm(norm) pp.set_array(np.array(vals)) pp.set_clim(cMin, cMax) xval = [k for k in xmap.keys()] ax.set_xlim(min(xval) - dx / 2, max(xval) + dx / 2) ax.set_ylim(len(ymap) + 0.5, -0.5) updateAxes_(ax) cb = None if kwargs.pop('colorBar', True): ori = kwargs.pop('orientation', 'horizontal') cb = pg.viewer.mpl.createColorBar(col, cMin=cMin, cMax=cMax, nLevs=5, label=label, orientation=ori) return ax, cb
[docs] def plotMatrix(mat, *args, **kwargs): """Naming conventions. Use drawDataMatrix or showDataMatrix instead.""" pg.deprecated("use drawDataMatrix or showMatrix") return showDataMatrix(*args, **kwargs)
[docs] def showDataMatrix(mat, xmap=None, ymap=None, **kwargs): """Show value map as matrix. Returns ------- ax : matplotlib axes object axes object cb : matplotlib colorbar colorbar object """ ax, _ = pg.show(ax=kwargs.pop('ax', None)) gci = drawDataMatrix(ax, mat, xmap=xmap, ymap=ymap, **kwargs) cb = None if kwargs.pop('colorBar', True): ori = kwargs.pop('orientation', 'horizontal') cMin = kwargs.pop('cMin', None) cMax = kwargs.pop('cMax', None) label = kwargs.pop('label', None) cb = pg.viewer.mpl.createColorBar(gci, cMin=cMin, cMax=cMax, nLevs=5, label=label, orientation=ori) return ax, cb
[docs] def drawDataMatrix(ax, mat, xmap=None, ymap=None, cMin=None, cMax=None, logScale=None, label=None, **kwargs): """Draw previously generated (generateVecMatrix) matrix. Parameters ---------- ax : mpl.axis axis to plot, if not given a new figure is created mat : numpy.array2d matrix to show xmap : dict {i:num} dict (must match A.shape[0]) ymap : iterable vector for x axis (must match A.shape[0]) cMin/cMax : float minimum/maximum color values logScale : bool logarithmic colour scale [min(A)>0] label : string colorbar label """ from matplotlib.colors import LogNorm, Normalize if xmap is None: xmap = {i: i for i in range(mat.shape[0])} if ymap is None: ymap = {i: i for i in range(mat.shape[1])} if isinstance(mat, np.ma.MaskedArray): mat_ = mat else: mat_ = np.ma.masked_where(mat == 0.0, mat, False) if cMin is None: cMin = np.nanmin(mat_) if cMax is None: cMax = np.nanmax(mat_) if logScale is None: logScale = (cMin > 0.0) if logScale: norm = LogNorm(vmin=cMin, vmax=cMax) else: norm = Normalize(vmin=cMin, vmax=cMax) gci = ax.imshow(mat_, norm=norm, interpolation='nearest') if 'cmap' in kwargs: pg.deprecated('use cMap') # 190422 gci.set_cmap(kwargs.pop('cmap')) if 'cMap' in kwargs: gci.set_cmap(kwargs.pop('cMap')) ax.set_aspect(kwargs.pop('aspect', 1)) ax.grid(True) xt = np.unique(ax.get_xticks().clip(0, len(xmap) - 1)) yt = np.unique(ax.get_xticks().clip(0, len(ymap) - 1)) if kwargs.pop('showally', False): yt = np.arange(len(ymap)) else: yt = np.round(np.linspace(0, len(ymap) - 1, 5)) xx = np.sort([k for k in xmap]) ax.set_xticks(xt) ax.set_xticklabels(['{:g}'.format(round(xx[int(ti)], 2)) for ti in xt]) yy = np.unique([k for k in ymap]) ax.set_yticks(yt) ax.set_yticklabels(['{:g}'.format(round(yy[int(ti)], 2)) for ti in yt]) return gci
[docs] def plotVecMatrix(xvec, yvec, vals, full=False, **kwargs): """Plot vectors as matrix (deprecated).""" pg.deprecated("use showVecMatrix") return showVecMatrix(xvec, yvec, vals, full, **kwargs)
[docs] def showVecMatrix(xvec, yvec, vals, full=False, **kwargs): """Plot three vectors as matrix. Parameters ---------- xvec, yvec : iterable (e.g. list, np.array, pg.Vector) of identical length vectors defining the indices into the matrix vals : iterable of same length as xvec/yvec vector containing the values to show full: bool [False] use a fully symmetric matrix containing all unique xvec+yvec otherwise A is squeezed to the individual unique xvec/yvec values **kwargs: forwarded to plotMatrix * ax : mpl.axis Axis to plot, if not given a new figure is created * cMin/cMax : float Minimum/maximum color values * logScale : bool Lgarithmic colour scale [min(A)>0] * label : string Colorbar label Returns ------- ax : matplotlib axes object axes object cb : matplotlib colorbar colorbar object """ A, xmap, ymap = generateMatrix(xvec, yvec, vals, full=full, verbose=kwargs.get("verbose", True)) return showDataMatrix(A, xmap=xmap, ymap=ymap, **kwargs)
[docs] def drawVecMatrix(ax, xvec, yvec, vals, full=False, **kwargs): """Draw x, y, v vectors in form of a matrix.""" A, xmap, ymap = generateMatrix(xvec, yvec, vals, full=full) return drawDataMatrix(ax, A, xmap=xmap, ymap=ymap, **kwargs)
[docs] def plotDataContainerAsMatrix(*args, **kwargs): """Plot datacontainer as matrix (deprecated).""" pg.deprecated('plotDataContainerAsMatrix', 'showDataContainerAsMatrix') return showDataContainerAsMatrix(*args, **kwargs)
[docs] def showDataContainerAsMatrix(data, x=None, y=None, v=None, **kwargs): """Plot data container as matrix (cross-plot). for each x, y and v token strings or vectors should be given """ xToken = '' yToken = '' mul = kwargs.pop('mul', 10**int(np.ceil(np.log10(data.sensorCount())))) plus = kwargs.pop('plus', 1) # add 1 to count verbose = kwargs.get('verbose', True) if isinstance(x, str): xToken = x x = data(x) elif hasattr(x, '__iter__') and isinstance(x[0], str): num = np.zeros(data.size()) for token in x: num *= mul num += data(token) + plus xToken += token + ' ' x = num.copy() if verbose: pg.info("found " + str(len(np.unique(x))) + " x values") if isinstance(y, str): yToken = y y = data(y) elif hasattr(y, '__iter__') and isinstance(y[0], str): num = np.zeros(data.size()) for token in y: num *= mul num += data(token) + plus yToken += token + ' ' y = num.copy() if isinstance(v, str): v = data(v) # kwargs.setdefault('ymap', {n: i for i, n in enumerate(np.unique(y))}) if verbose: pg.info("found " + str(len(np.unique(y))) + " y values") pg.info("x vector length: {:d}".format(len(x))) pg.info("y vector length: {:d}".format(len(y))) pg.info("v vector length: {:d}".format(len(v))) if x is None or y is None or v is None: raise Exception("Vectors or strings must be given") if len(x) != len(y) or len(x) != len(v): raise Exception("lengths x/y/v not matching: {:d}!={:d}!={:d}".format( len(x), len(y), len(v))) ax, cbar = showVecMatrix(x, y, v, **kwargs) try: ax.set_xlabel(xToken) ax.set_ylabel(yToken) except Exception: print("Could not set x/y label: ", xToken, yToken) return ax, cbar
[docs] def drawSensorAsMarker(ax, data): """Draw Sensor marker, these marker are pickable.""" elecsX = [] elecsY = [] for i in range(len(data.sensorPositions())): elecsX.append(data.sensorPositions()[i][0]) elecsY.append(data.sensorPositions()[i][1]) electrodeMarker, = ax.plot(elecsX, elecsY, 'x', color='black', picker=5.) ax.set_xlim([data.sensorPositions()[0][0] - 1., data.sensorPositions()[data.sensorCount() - 1][0] + 1.]) return electrodeMarker