Source code for pygimli.physics.sNMR.mrsprofile

# -*- coding: utf-8 -*-
"""classes for inverting profile data with magnetic resonance soundings (MRS)
The preferred LCI type of MRS inversion was published in:
Costabel, S., Günther, T., Dlugosch, R. & Müller-Petke, M. (2016):
Torus-nuclear magnetic resonance: Quasi-continuous airborne magnetic resonance
profiling by using a helium-filled balloon. Geophysics 81(4), W119-W129,
doi:10.1190/geo2015-0467.1."""

import sys
import os
from glob import glob
import numpy as np

import pygimli as pg
from pygimli.viewer.mpl import showStitchedModels
from . mrs import MRS
from . modelling import MRS1dBlockQTModelling


class MultiFOP(pg.core.ModellingBase):  # classical joint FOP => frameworks
    def __init__(self, mrsAll, nlay=3):
        mesh = pg.meshtools.createMesh1DBlock(nlay, 2)  # thk, wc, T2*
        pg.core.ModellingBase.__init__(self, mesh)
        self.fAll = []
        for mrs in mrsAll:
            mrs.createFOP(nlay)
            self.fAll.append(mrs.f)

    def response(self, model):
        """compute response by concatenating individual responses."""
        resp = pg.Vector()
        for f in self.fAll:
            resp = pg.cat(resp, f.response(model))
        return resp


class JointMRSModelling(MRS1dBlockQTModelling):
    """MRS Laterally constrained modelling based on BlockMatrices."""

    def __init__(self, mrs, nlay=2, verbose=False):
        """Parameters: FDEM data class and number of layers"""
        super(JointMRSModelling, self).__init__(nlay, mrs[0].K, mrs[0].z,
                                                mrs[0].t, verbose)
        self.mrs = mrs
        for mrsi in mrs:
            mrsi.createFOP(nlay)

    def response(self, model):
        """response function (all responses together)"""
        response = pg.Vector()
        for mrs in self.mrs:
            response = pg.cat(response, mrs.f(model))


class MRSLCI(pg.core.ModellingBase):
    """MRS Laterally constrained modelling based on BlockMatrices."""

    def __init__(self, profile, nlay=2, verbose=False):
        """Parameters: FDEM data class and number of layers"""
        super(MRSLCI, self).__init__(verbose)
        self.nlay = nlay
        self.nx = len(profile)
        self.np = 3 * nlay - 1
#        self.mesh2d = pg.meshtools.createMesh2D(npar, self.nx)
#        self.mesh2d = pg.meshtools.createMesh2D(self.nx, self.np)
        self.mesh2d = pg.meshtools.createMesh2D(range(self.np+1), range(self.nx+1))
        self.mesh2d.rotate(pg.RVector3(0, 0, -np.pi/2))
        self.setMesh(self.mesh2d)
        self.J = pg.matrix.BlockMatrix()
        self.FOP1d = []
        ipos = 0
        for i, mrs in enumerate(profile):
            mrs.createFOP(nlay, verbose=False)
            self.FOP1d.append(mrs.f)
            n = self.J.addMatrix(self.FOP1d[-1].jacobian())
            self.J.addMatrixEntry(n, ipos, self.np * i)
            ipos += len(mrs.data)

        self.J.recalcMatrixSize()
        print(self.J.rows(), self.J.cols())
        self.setJacobian(self.J)

    def response(self, model):
        """cut-together forward responses of all soundings"""
        modA = np.asarray(model).reshape(self.nx, self.np)
#        modA = np.reshape(model, (self.nx, self.np))
        resp = pg.Vector(0)
        for i, modi in enumerate(modA):
            resp = pg.cat(resp, self.FOP1d[i].response(modi))

        return resp

    def createJacobian(self, model):
        """ fill individual blocks of Block-Jacobian matrix """
        modA = np.asarray(model).reshape(self.nx, self.np)
#        modA = np.reshape(model, (self.nx, self.np))
        for i in range(self.nx):
            self.FOP1d[i].createJacobian(modA[i])


[docs] class MRSprofile(): """manager class for several MRS data along a profile for joint inversion Attributes ---------- mrs : list of MRS objects (single soundings) x : list of positions for the soundings Methods ------- load - load mrs files from a directory set X - set x vector showData - show MRS data independentBlock1dInversion - perform independent 1D block inversion block1dInversion - 1D block inversion of all data sets together blockLCInversion - 1D block laterally constrained inversion of all data printFits - print total misfit (chi^2, rms) and individual values showModel - show LCI model """
[docs] def __init__(self, filename=None, x=None, dx=1, x0=0, **kwargs): """Initialize profile object by mrs objects and optional positions. Parameters ---------- filename : list of str | str list of files OR filenames(with *) OR directory to load x : iterable position vector of individual soundings x0 : float [0] starting position dx : position [1] position increment """ self.mrs = [] self.nData = 0 self.figs = {} self.totalChi2 = None self.totalRMS = None self.WMOD = None self.TMOD = None self.RMSvec = None self.Chi2vec = None if '*' in filename: # a filename with asterisks files = glob(filename) elif os.path.isdir(filename): # a directory with all files to take files = glob(filename+'/*.mrsi') if len(files) == 0: files = glob(filename+'/*.mrsd') elif hasattr(filename, '__iter__'): # already a list files = filename else: if filename is not None: print('Do not know what to do with filename') return self.load(files, **kwargs) if x is not None: self.setX(x) else: self.x = np.arange(len(self.mrs)) * dx + x0
def __repr__(self): return "MRS profile with "+str(len(self.mrs))+" soundings"
[docs] def setX(self, x=None, x0=0, dx=1): """define positions for soundings and sort accordingly""" if x is None: x = np.arange(len(self.mrs)) * dx + x0 print(x) ind = np.argsort(x) self.mrs = self.mrs(ind) self.x = np.sort(x)
[docs] def load(self, filenames, **kwargs): """ load mrs files in a list of (single) MRS handlers filename can be a list of mrsi files or a directory to search Additional parameters: usereal, mint, maxt (see MRS.load) """ self.mrs = [MRS(filename, **kwargs) for filename in filenames]
[docs] def loadKernel(self, kernelfile): """ load one kernel file for all soundings """ self.mrs[0].loadKernel(kernelfile) for mrsi in self.mrs: mrsi.z = self.mrs[0].z mrsi.K = self.mrs[0].K
[docs] def showData(self, figsize=(15, 10), nc=0, nr=0, clim=None): """show all data cubes in subplots""" from math import sqrt, ceil nsond = len(self.mrs) if nc == 0: nc = ceil(sqrt(nsond*3)) if nr == 0: nr = ceil(nsond/nc) fig, ax = plt.subplots(nrows=int(nr), ncols=int(nc), figsize=figsize) for i, mrs in enumerate(self.mrs): mrs.showCube(ax=ax.flat[i], vec=mrs.data*1e9, islog=False, clim=clim) self.figs['data'] = fig return fig, ax
[docs] def showInitialValues(self): """ show initial values of whole profile """ IVI = np.zeros((len(self.mrs[0].q), len(self.mrs))) for i, mrs in enumerate(self.mrs): IVI[:, i] = mrs.dcube[:, 0] fig, ax = plt.subplots(figsize=(15, 10)) im = ax.imshow(IVI*1e9, interpolation='nearest') plt.colorbar(im, ax=ax, orientation='horizontal') self.figs['ivi'] = fig return fig, ax
[docs] def independentBlock1dInversion(self, nlay=2, lam=100, startModel=None): """Independent inversion of all soundings. Parameters ---------- nlay : int [2] number of layers lam : float regularization parameter startModel : array/vector starting model (see MRS.run parameters) """ self.WMOD, self.TMOD = [], [] self.RMSvec, self.Chi2vec, self.nData = [], [], [] for i, mrs in enumerate(self.mrs): if hasattr(startModel[0], '__iter__'): startvec = startModel[i] else: startvec = startModel if startvec is not None: nlay = (len(startvec)-1) // 2 mrs.run(nlay=nlay, startvec=startvec, lam=lam, verbose=False) mrs.INV.echoStatus() thk, wc, t2 = mrs.result() self.WMOD.append(np.hstack((thk, wc))) self.TMOD.append(np.hstack((thk, t2))) self.RMSvec.append(mrs.INV.absrms()*1e9) # in nV self.Chi2vec.append(mrs.INV.chi2()) self.nData.append(len(mrs.data)) self.totalChi2 = sum(np.array(self.Chi2vec)*np.array(self.nData)) / \ sum(self.nData) self.totalRMS = np.sqrt(sum(np.array(self.RMSvec)**2 * np.array(self.nData)) / sum(self.nData))
[docs] def block1dInversionOld(self, nlay=2, startModel=None, verbose=True, uncertainty=False, **kwargs): """Invert all data together by one 1D model (variant 1 - all equal).""" self.mrsall = MRS() self.mrsall.z = self.mrs[0].z self.mrsall.t = self.mrs[0].t self.mrsall.data, self.mrsall.error, self.mrsall.q = [], [], [] self.mrsall.K = np.zeros((0, self.mrs[0].K.shape[1])) for mrs in self.mrs: self.mrsall.data = np.hstack((self.mrsall.data, mrs.data)) self.mrsall.error = np.hstack((self.mrsall.error, np.real(mrs.error))) self.mrsall.q = np.hstack((self.mrsall.q, mrs.q)) self.mrsall.K = np.vstack((self.mrsall.K, mrs.K)) self.mrsall.run(nlay, stvec=startModel, verbose=verbose, **kwargs) if verbose: self.mrsall.showResult() return self.mrsall.model
[docs] def block1dInversion(self, nlay=2, lam=100., show=False, verbose=True, uncertainty=False): """Invert all data together by a 1D model (more general solution).""" data, error = pg.Vector(), pg.Vector() for mrs in self.mrs: data = pg.cat(data, mrs.data) error = pg.cat(error, np.real(mrs.error)) # f = JointMRSModelling(self.mrs, nlay) f = MultiFOP(self.mrs, nlay) mrsobj = self.mrs[0] for i in range(3): f.region(i).setParameters(mrsobj.startval[i], mrsobj.lowerBound[i], mrsobj.upperBound[i]) INV = pg.Inversion(data, f, verbose) INV.setLambda(lam) INV.setMarquardtScheme(0.8) # INV.stopAtChi1(False) # should be already in MarquardtScheme INV.setDeltaPhiAbortPercent(0.5) INV.setAbsoluteError(error) model = INV.run() m0 = self.mrs[0] m0.model = np.asarray(model) if uncertainty: from pygimli.utils import iterateBounds m0.modelL, m0.modelU = iterateBounds( INV, dchi2=INV.chi2() / 2, change=1.2) if show: self.show1dModel() # %% fill up 2D model (for display only) self.WMOD, self.TMOD = [], [] thk = model[0:nlay-1] wc = model[nlay-1:2*nlay-1] t2 = model[2*nlay-1:3*nlay-1] for i in range(len(self.mrs)): self.WMOD.append(np.hstack((thk, wc))) self.TMOD.append(np.hstack((thk, t2))) return model
[docs] def show1dModel(self): """Show 1D model (e.g. of joint block inversion).""" self.figs['1dmodel'], ax = self.mrs[0].showResult()
[docs] def blockLCInversion(self, nlay=2, startModel=None, **kwargs): """Laterally constrained (piece-wise 1D) block inversion.""" data, error, self.nData = pg.Vector(), pg.Vector(), [] for mrs in self.mrs: data = pg.cat(data, mrs.data) error = pg.cat(error, mrs.error) self.nData.append(len(mrs.data)) fop = MRSLCI(self.mrs, nlay=nlay) fop.region(0).setZWeight(kwargs.pop('zWeight', 0)) fop.region(0).setConstraintType(kwargs.pop('cType', 1)) transData, transMod = pg.trans.Trans(), pg.trans.TransLog() # LU(1., 500.) if startModel is None: startModel = self.block1dInversion(nlay, verbose=False) model = kwargs.pop('startvec', np.tile(startModel, len(self.mrs))) INV = pg.Inversion(data, fop, transData, transMod, True, False) INV.setModel(model) INV.setReferenceModel(model) INV.setAbsoluteError(error) INV.setLambda(kwargs.pop('lam', 100)) INV.setMaxIter(kwargs.pop('maxIter', 20)) # INV.stopAtChi1(False) INV.setLambdaFactor(0.9) INV.setDeltaPhiAbortPercent(0.1) model = INV.run() self.WMOD, self.TMOD = [], [] for par in np.reshape(model, (len(self.mrs), 3*nlay-1)): thk = par[0:nlay-1] self.WMOD.append(np.hstack((thk, par[nlay-1:2*nlay-1]))) self.TMOD.append(np.hstack((thk, par[2*nlay-1:3*nlay-1]))) ind = np.hstack((0, np.cumsum(self.nData))) resp = INV.response() misfit = data - resp emisfit = misfit / error misfit *= 1e9 self.totalChi2 = INV.chi2() self.totalRMS = INV.absrms()*1e9 self.RMSvec, self.Chi2vec = [], [] for i in range(len(self.mrs)): self.RMSvec.append(np.sqrt(np.mean(misfit[ind[i]:ind[i+1]]**2))) self.Chi2vec.append(np.mean(emisfit[ind[i]:ind[i+1]]**2))
[docs] def printFits(self): """Show single fits and total fit.""" np.set_printoptions(precision=2) print("Single RMS [nV]:") print(np.array(self.RMSvec)) print("Single Chi^2:") print(np.array(self.Chi2vec)) print('Total RMS/Chi^2 value:') print(np.round(self.totalRMS, 2), np.round(self.totalChi2, 2))
[docs] def showWC(self, wlim=(0, 0.5), ax=None, cmap='Spectral', title=r'$\theta$ (-)'): """Show water content distribution as stitched model section.""" fig = None if ax is None: fig, ax = plt.subplots(figsize=(10, 5)) self.figs['wc'] = fig showStitchedModels(self.WMOD, ax=ax, x=self.x, islog=False, cmap=cmap, title=title, cmin=wlim[0], cmax=wlim[1]) return fig, ax
[docs] def showT2(self, tlim=(0.05, 0.5), ax=None, cmap='Spectral', title=r'$T_2^*$ (s)'): """Show relaxation time distribution as stitched model section.""" fig = None if ax is None: fig, ax = plt.subplots(figsize=(10, 5)) self.figs['t2'] = fig showStitchedModels(self.TMOD, ax=ax, x=self.x, islog=True, cmap=cmap, cmin=tlim[0], cmax=tlim[1], title=title) return fig, ax
[docs] def showFits(self, ax=None): """Show chi-square and rms fits of individual soundings.""" if ax is None: fig, ax = plt.subplots(figsize=(10, 5)) self.figs['fits'] = fig axb = ax.twinx() axb.set_ylabel('rms (nV)') ax.plot(self.x, self.Chi2vec, 'rx', label=r'$\chi^2$') axb.plot(self.x, self.RMSvec, 'bx', label='rms [nV]') ax.legend(numpoints=1, loc=2) axb.legend(numpoints=1, loc=1)
[docs] def showModel(self, showFit=0, cmap='Spectral', figsize=(13, 12), wlim=(0, 0.5), tlim=(0.05, 0.5)): """Show 2d model as stitched 1d models along with fit.""" fig, ax = plt.subplots(nrows=2+showFit, figsize=figsize, sharex=True) self.showWC(wlim, ax=ax[-2], cmap=cmap) self.showT2(tlim, ax=ax[-1], cmap=cmap) xl = ax[-1].get_xlim() ax[0].set_xlabel('x (m)') ax[0].xaxis.set_label_position('top') ax[0].xaxis.tick_top() ax[0].set_ylabel(r'$\chi^2$ (-)') for axi in ax[-2:]: axi.set_ylabel('z (m)') if showFit > 0: self.showFits(ax[0]) ax[0].set_xlim(xl) return fig, ax
[docs] def saveFigs(self, basename="out", extension="pdf"): """Save all figures to (pdf) files.""" for key in self.figs: self.figs[key].savefig(basename+"-"+key+"."+extension, bbox_inches='tight')
if __name__ == "__main__": name = sys.argv[-1] numlay = 3 prof = MRSprofile(name) # directory or list of names print(prof) figure, axes = prof.showData() # subplots with data cubes mymodel = prof.block1dInversion(nlay=numlay) # all in one model prof.independentBlock1dInversion(nlay=2) # each separately prof.printFits() figure, axes = prof.showModel(showFit=1) figure.savefig(name+'-Ind-N'+str(numlay)+'.pdf', bbox_inches='tight') prof.blockLCInversion(nlay=numlay, lam=100, startModel=mymodel) prof.printFits() figure, axes = prof.showModel(showFit=1) figure.savefig(name+'-LCI-N'+str(numlay)+'.pdf', bbox_inches='tight')