# -*- coding: utf-8 -*-
"""pyGIMLi - Linesearch.
Linesearch procedures used by various inversion frameworks.
"""
import numpy as np
def tauVector(taumin=0.01, taumax=1, logScale=False, n=21):
"""Generate a vector of tau values."""
if logScale:
return np.logspace(np.log10(taumin), np.log10(taumax), n)
else:
return np.linspace(taumin, taumax, n)
def lineSearchExact(inv, dM, taus=None, show=False, **kwargs):
"""Line search by exact forward response.
Parameters
----------
inv : pg.Inversion
pygimli Inversion (or any derived class) instance
taus : array
array containing the tau values to test, alternatively:
taumin : float
minimum value
taumax : float
maximum value
logScale : bool
use logarithmic scaling, otherwise linear
show : bool
show curve
"""
if taus is None:
taus = tauVector(**kwargs)
phis = np.zeros_like(taus)
for i, tau in enumerate(taus):
newModel = inv.modelTrans.update(inv.model, dM*tau)
newResponse = inv.fop.response(newModel)
phis[i] = inv.phi(newModel, newResponse)
if show:
import matplotlib.pyplot as plt
if kwargs.get("logScale", False):
plt.semilogx(taus, phis)
else:
plt.plot(taus, phis)
return taus[np.argmin(phis)], newResponse
def lineSearchInter(inv, dM, taus=None, show=False, **kwargs):
"""Optimizes line search parameter by linear response interpolation.
Parameters
----------
inv : pg.Inversion
pygimli Inversion (or any derived class) instance
taus : array
array containing the tau values to test, alternatively:
taumin : float
minimum value
taumax : float
maximum value
logScale : bool
use logarithmic scaling, otherwise linear
show : bool
show curve
"""
if taus is None:
taus = tauVector(**kwargs)
phis = np.zeros_like(taus)
dT = inv.dataTrans
oldResponse = dT(inv.response)
fullModel = inv.modelTrans.update(inv.model, dM)
fullResponse = dT(inv.fop.response(fullModel))
for i, tau in enumerate(taus):
newModel = inv.modelTrans.update(inv.model, dM*tau)
newResponse = dT.inv(oldResponse + (fullResponse - oldResponse) * tau)
phis[i] = inv.phi(newModel, newResponse)
if show:
import matplotlib.pyplot as plt
if kwargs.get("logScale", False):
plt.semilogx(taus, phis)
else:
plt.plot(taus, phis)
return taus[np.argmin(phis)], newResponse
def lineSearchInterOld(inv, dM, nTau=100, maxTau=1.0):
"""Optimizes line search parameter by linear response interpolation."""
tD = inv.dataTrans
tM = inv.modelTrans
model = inv.model
response = inv.response
modelLS = tM.update(model, dM * maxTau)
responseLS = inv.fop.response(modelLS)
taus = np.arange(1, nTau+1) / nTau * maxTau
phi = np.ones_like(taus) * inv.phi()
phi[-1] = inv.phi(modelLS, responseLS)
t0 = tD.fwd(response)
t1 = tD.fwd(responseLS)
for i, tau in enumerate(taus):
modelI = tM.update(model, dM*tau)
responseI = tD.inv(t1*tau+t0*(1.0-tau))
phi[i] = inv.phi(modelI, responseI)
return taus[np.argmin(phi)], responseLS
def lineSearchQuad(inv, dm, tautest=0.3, tau1=1, show=False, **kwargs):
"""Optimize line search by fitting parabola by Phi(tau) curve."""
y0 = inv.phi()
x1 = tau1
fullModel = np.exp(dm*x1)*inv.model
fullResponse = inv.fop.response(fullModel)
xt = tautest
testModel = np.exp(dm*xt)*inv.model
testResponse = inv.fop.response(testModel)
y1 = inv.phi(fullModel, fullResponse)
yt = inv.phi(testModel, testResponse)
rt = (yt-y0) / xt
r1 = (y1-y0) / x1
a = (rt - r1) / (xt - x1)
b = (-rt*x1 + r1*xt) / (xt - x1)
xopt = -b/a/2
# xopt = (rt*x1 - r1*xt) / (rt - r1) / 2
if show:
taus = np.arange(0, 1.001, 0.01)
import matplotlib.pyplot as plt
ax = plt.subplots()[1]
ax.plot(taus, taus**2*a+taus*b+y0, label="parabola")
ax.plot(0, y0, "*", label="start")
ax.plot(xt, yt, "*", label="test")
ax.plot(x1, y1, "*", label="full")
ax.plot(xopt, a*xopt**2+b*xopt+y0, "*", label="min")
ax.grid()
ax.legend()
return xopt, None
[docs]
def lineSearch(inv, dm, method='auto', **kwargs):
"""Carry out line search.
Optimize step length s such that
m + s*dm
is minimized.
Parameter
---------
inv : pg.Inversion
Inversion instance
dm : iterable
model update direction
method : str ['auto']
Method to be used:
'exact' : function evaluation for every step
'interp' : linear interpolation of response
'quad' : fitting a parabola through 3 points
'auto': first try 'inter', then 'quad', else 0.1
taus : array [None]
array containing the tau values to test, alternatively:
taumin : float [0.01]
minimum value
taumax : float [1]
maximum value
logScale : bool [False]
use logarithmic scaling, otherwise linear
show : bool [False]
show line search curve
"""
if method.lower().startswith("exact"):
return lineSearchExact(inv, dm, **kwargs)
elif method.lower().startswith("int"):
return lineSearchInter(inv, dm, **kwargs)
elif method.lower().startswith("quad"):
return lineSearchQuad(inv, dm, **kwargs)
else:
tau, response = lineSearchInter(inv, dm, **kwargs)
if tau > 0.01 and tau <= 1:
return tau, response
tau, response = lineSearchQuad(inv, dm, **kwargs)
if tau > 0.01 and tau <= 1:
return tau, response
else:
return 0.1, None
if __name__ == "__main__":
pass